

1. はじめに

有機・無機材料の化学構造あるいは分子構造の 分析手法として、ラマン分光法は近年さまざまな 分野に応用されている。その適用範囲は電池、ディ スプレイ、電子デバイス、食品 / 医薬品、バイオ 分野など幅広く、カーボン、半導体、高分子、医 薬材料などの成分分析や、結晶性 / 応力評価に威 力を発揮する。最近では、生体組織や細胞の研究 においても盛んに利用されている^[1]。

2. ラマン分光法の原理

ラマン分光スペクトルは、化学構造あるいは分 子構造を特徴づける指紋として捉えることができ る。

図1 ラマン散乱の原理

図1に示すように、物質に光を照射すると散乱 光が発生する。そのほとんどは照射光と同じ波長 のレイリー散乱光であるが、わずかに波長の異な る散乱光も含まれている。これをラマン散乱光と 呼ぶ。

レイリー散乱光とラマン散乱光のエネルギー差 は、物質内の原子間振動のエネルギーに対応して いる。そのため、散乱光を分光したスペクトルに は化学結合情報が反映される。ラマンスペクトル の横軸には、エネルギーに比例する単位として 波数(波長の逆数)[cm⁻¹]を用いるのが一般的で、 レイリー散乱光の波数をゼロとした波数差(ラマ ンシフト)で表す(図2参照)。

図2 ポリエチレンのラマンスペクトル

3. ラマン分光装置の構成

ラマン分光装置は、入射光源(レーザ)と分光 器、検出器で構成され、ラマン散乱光のスペクト ル測定に用いられる。最近では、顕微鏡と組み合 わせた顕微ラマン分光装置がよく使われるように なってきた。

図3に堀場製作所製共焦点顕微ラマン分光装置 LabRAM HR Evolution の構成を示す。本装置で は、光源であるレーザ光を光学顕微鏡用対物レン ズによりステージ上の試料に照射する。試料から 発生したラマン散乱光を同対物レンズにて集光し、 レイリー光カットフィルタを通して分光器に導く。 分光器の回折格子(グレーティング)により分散 した光はマルチチャンネル検出器(CCD)を使っ てスペクトルとして測定される。

図3 共焦点顕微ラマン分光装置の構成

4. 特徴(長所・短所)

ラマン分光法の特徴は、固体のみならず、液体、 気体のいずれの状態においても、大気雰囲気で特 に前処理を必要としないで測定できることである。 可視レーザ光を分析プローブとして利用する場合、 顕微ラマン分光装置では、約1マイクロメータの 空間分解能が得られ、マッピング測定によってラ マンイメージを簡単に取得することができる。一 方、短所として、ラマン散乱強度がレイリー散乱 の百万分の一程度と非常に微弱であることがあげ られる。このため、ラマン分光は感度が低い、あ るいは競合現象である蛍光発生の影響を受ける、 といった問題点が指摘されてきた。しかし、近年 では、レーザをはじめとする光学部品の進歩と共 焦点型顕微光学系の採用により、微小領域の測定 でも短時間で良好なスペクトルが得られるように なり、試料から発生する蛍光の影響も軽減されて いる。

5-1. 応用例:電極材料の評価

リチウムイオン電池(LIB:Lithium ion battery)の正極材料に使われるコバルト酸リ チウム(LiCoO₂)は、電池の劣化にともない酸 化コバルト(Co₃O₄)に変化する。充放電サイ クルテスト後に正極を LIB から取り出し洗浄 した試料表面の測定結果から、図4に示す LiCoO₂、劣化したLiCoO₂(★はCo₃O₄のラマン バンド)、カーボンのラマンスペクトルが観測さ れた^[2]。

ラマン分光法は、大気中 / 非接触で特に試料調 製を必要としないため、石英製光学窓を持つ密閉 セルにアルゴンガス中で密封した LIB を直接測 定することができる。セル中の LIB を充放電サ イクル試験にかけ、電極表面変化をラマンスペク トルの変化として捉えることができる^[2]。

5-2. 応用例:半導体の応力評価

半導体デバイスなどに用いられる単結晶シリコ ンの応力評価にラマン分光が使われている。結晶 に作用する応力により、シリコンのフォノンバン ドがシフトすることが知られており、[110] 方向 の一軸に対する [100] 面の応力 σ_{xx} [MPa] とピー クシフト $\Delta \nu$ [cm⁴] の関係式は以下で表される^[3]。

 $\sigma_{xx} = -470.95 \ \Delta \ v \quad [100]$

5-3. 応用例: 医薬品錠剤のラマンイメージング

医薬品錠剤中の複数の化学成分について、それ ぞれ異なる互いに重ならないラマンバンドの強度 を使って、各成分の分布イメージを得ることがで きる。医薬品の活性成分にはいくつかの異なる結 晶形(結晶多形)を持つものがあり、ラマンスペ クトルを使ってこの違いも識別することができる ^[4]。

マッピング測定の高速化のために1ピクセル 当たりのスペクトル採取時間はミリ秒オーダーに なってきている。採取時間の短縮に伴いスペクト ルのノイズが増えるため、測定されたスペクトル からラマンバンドを特定する事が困難になる。そ こで、多変量解析によるスペクトル分離手法がよ く用いられるようになってきた。データ処理には、 試料走査方向に対応する X 軸、Y 軸に加え、ス ペクトル横軸の次元を Z 軸にとった3次元のハ イパーキューブ・データを取り扱う。これらのデー タセットから、互いに独立なスペクトル成分を多 変量解析の手法によりモデルスペクトルとして抽 出し、測定したポイントごとに各モデルスペクト ルの寄与度を計算し、その寄与度の大きさを使っ てイメージを作成する。ラマンバンドを選択する 従来の方法と比較し、よりわずかなスペクトル差 を識別して成分分布イメージを作成することがで きる。

5-4. 応用例: ガン細胞のラマンイメージング^[4]

顕微ラマン分光装置を使って、タンパク質、多 糖類、DNA/RNA、脂質をはじめ、生体内に蓄 積された様々な化学物質を、単一細胞のレベルで イメージ化することができる。一例としてがん細 胞ミエローマの測定例を紹介する。

ミエローマ細胞は、HeLa 細胞のような足場を 持たず、ステージ移動操作に伴い容易に動く。そ こで、試料ステージを固定しレーザ照射位置を走 査して測定した。前述の多変量解析の手法により 得られたラマンイメージを図5右に示す。左は顕 微鏡観察イメージである。核成分が細胞内に多量 に存在し、成分スペクトルのわずかな違いにより 三種類の核酸(DNA)領域A、C、Eに分類で きている。

●参考文献

- [1] 濱口宏夫, 岩田耕一, ラマン分光法 (議談社, 2015).
- [2] J.Hirose, *Readout*, 40, 49(2013).
- [3] M. Komatsubara, T. Namazu, Y. Nagai, S. Inoue, N. Naka, S. Kashiwagi, K. Ohtsuki, *Jph. J. Appl. phys.*, 48, 04C021(2009).
- [4] T. Numata et al. Readout, 45, 24(2015).